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RESEARCH AJYD STUDY I N  

SYSTEM OPTIMIZATION TECHNIQUES 

SECTION 1 

GENERAL 

This  i s  t h e  first q u a r t e r l y  progress  r e p o r t  submitted i n  accordance wi th  

t h e  provis ions  of Modif icat ion 4 t o  Contract NAS 8-5222, "Research and Study 

i n  System Optimizat ion Techniques." 

t o  14 February 1965. 

It covers t h e  per iod  from 14  November 1964 

SECTION I1 

SUMMARY OF PRIOR PROGRESS 

The r e s u l t s  o f  t h e  previous work done under the  c o n t r a c t  are repor ted  i n  

F i n a l  Report  1546-FTR 1. 

The February 3 and 4 meeting of  con t r ac to r s  on Guidance and Space F l i g h t  

Theory was a t tended  by D r .  E. B. Lee and D. K. Scharmack of Honeywell. Dr.Lee 

presented  a paper e n t i t l e d  "Approximations t o  Linear  Bounded Phase Coordinate 

Control  Problems" and M r .  Scharmack presented a paper e n t i t l e d  "Nonlinear 

Optimal Feedback Control  f o r  Reentryl 'at the gene ra l  sess ion .  



-2- 

SECTION I11 

PROGRESS DURING FEPORTING PERIOD 

S t a b i l i t v  of Motion Studv 

The new r e s u l t s  t h a t  have been obtained i n  t h e  a r e a  o f  s t a b i l i t y  of 

I motion a r e  contained i n  t h e  a t t ached  appendix enti t1ed”Lyapunov Funct ions 

and Thei r  Related S y s t e m  wi th  Applicat ions t o  F inding  The i r  Best Est imators .“  

It inc ludes  a d i scuss ion  of  how Lyapunov func t ions  can be appl ied  t o  t h e  

fundamental  problem of t h e  de te rmina t ion  of sets of i n i t i a l  states from 

which’ t h e  d e s i r e d  te rmina l  state of a dynamical system (with c o n t r o l )  may 

I 
I 
I be a t t a i n e d .  

The paper a l s o  conta ins  a mathematical a n a l y s i s  of  t h e  connection between 

d i f f e r e n t i a l  equat ions and t h e i r  Lyapunm f’unctions. I n  t h e  s e c t i o n  on 

a p p l i c a t i o n s  a method f o r  ob ta in ing  estimates of Lyapunov func t ions  v i a  

computer i s  developed. (see t h e  summary) 

I 
I 

I 
I 
I 

I The 1Fteratv.re survey C)E m e t h ~ d s  and t e c l . ; n i ~ . ; ~  for determizli lg i-egloiis 

of  s t a b i l i t y  i s  being c a r r i e d  on. 

p rev ious ly  examined have been found. However, some i n t e r e s t i n g  r e l a t e d  papers  

have been examined. The survey s h a l l  be continued as more of t he  prospec t ive  

papers  a r e  co l l ec t ed .  

A s  y e t  no new methods o t h e r  than  those  

Guidance Study 

All t h e  memos w r i t t e n  a t  Honeywell on P-matrix p r e d i c t i v e  guidance have 
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been read.  It w a s  decided t o  do computer s imula t ions  t o  eva lua te  P-matrix 

p r e d i c t i v e  guidance. The t h r e e  s t a g e  Thor veh ic l e  w a s  chosen as t h e  model 

and t h r u s t  and a e r o  d a t a  was gathered on it. 

product  s t e e r i n g  l a w .  The p red ic t ed  te rmina l  e r r o r  will be c a l c u l a t e d  as 

It w a s  decided t o  use  a c r o s s  

components i n  a guidance coord ina te  system. 

t o  d r i v e  two or t h r e e  of t h e  t e rmina l  e r r o r  

s t a r t e d  on t h e  s imula t ion  program. 

SECTION 

Thrust  guidance w i l l  be used 

components t o  zero.  Coding w a s  

I V  

PLANS FOR NEXT QUARTER 

I n  t h e  s t a b i l i t y  area t h e  l i t e r a t u r e  survey  will be  cont inued.  Also 

some of t h e  ques t ions  r a i s e d  i n  t h e  appended paper will be  examined. One 

of t h e s e  i s  “What should be t h e  c r i t e r i a  for t h e  choice of p o s i t i v e  d e f i n i t e  

forms used i n  c a l c u l a t i n g  Lyapunov func t ions?”  

The computer program t o  eva lua te  P-matrix guidance will be coded and 

Simulat ions will be run  t o  eva lua te  P-matrix guidance and checked ou t .  

modi f ica t ions  will be made t o  i n c r e a s e  i t s  a b i l i t y  t o  guide f o r  off-nominal 

t r a j e c t o r i e s .  

SECTION V 

EXPENDITURES 

T o t a l  funds expended on Modif icat ion 4 c o n t r a c t  from i t s  e f f e c t i v e  d a t e  

This i s  16 percent  of November 14, 1964 t o  February 7, 1965 have been $3694. 

of t h e  funds from Modif icat ion 4. 
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SECTION 

INTRODUCTORY 

Introduction 

Lyapunov functions have been 

study of stability and asymptotic 

I 

THEORY 

used by mathematicians in the 

stability of the solutions 

of ordinary differential equations.* 

to determine regions of asymptotic stability and to find 

estimates of the disturbed motion about a reference trajectory. 

Consequently they have a high potential for being useful in 

many problems in applied mathematics. 

They can also be applied 

Unfortunately, this use has been limited by the difficulty 

usually encountered in determining them for specific differen- 

tial equations .** But, fortunately f o r  the analyst , there 
is a one-to-many correspondence between a differential equation 

and its Lyapunov functions. 

choosing a positive definite form and attempting t o  adjust 

its parameters to obtain a Lyapunov function f o r  the system 

could conceivably be developed into a highly effective applied 

mathemztical tool-particularly if the parameter adjustment 

could be done on high speed computers, 

Consequently, the technique of 

In this section the correspondence between systems and 

%See Le Cesari 12, 1071 for a discussion of Lyapunov's second 

method and bibliographical notes. 
**V. I. Zubov 

Lyapunov functions as solutions to partial differential equations, 

1 has developed a method for constructing 
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t h e i r  Lyapunov func t ions  i s  s tudied .  On t h e  b a s i s  o f  some 

of t h e s e  r e s u l t s ,  func t ions  d = d ( o )  def ined on t h e  parsmeter 

spzce i? a r e  obtained i n  s e c t i o n  11. The parameters i n  t h e  

forn  can be adjusted by minimizing d ( o )  over 

process  can be c a r r i e d  out  on a computer. 

and so  t h e  

Summary 

We begin by e s t a b l i s h i n g  t h e  correspondence between a 

Lyapunov func t ion  and t h e  d i f f e r e n t i a l  systems t o  which it 

a p p l i e s .  Th i s  i s  done first f o r  t h e  autonomous case (Theorem 

143) and l a t e r  t o  t h e  more complicated case where time e n t e r s  

e x p l i c i t l y  i n  t h e  r igh t  hand sides of t h e  system equat ions 

(Thecrzm 1 .a).  
For t h e  autonomous case t h i s  correspondence i s  examined 

i n  more d e t a i l  t o  a r r i v e  a t  cannonical forms f o r  systems w i t h  

quadra t ic  Lyapunov func t ions  (Coro l l a r i e s  1.5 and 1.6) .  

Theorem 1.9 shows t h a t  i f  t h e  Lyapunov d e r i v a t i v e  of  a 

p o s i t i v e  d e f i n i t e  form V i s  negative i n  a de l e t ed  neighbor- 

hood of the o r i g i n ,  then  a s u f f i c i e n t  cond i t ion  for g loba l  

asymptotic s t a b i l i t y  i s  t h a t  i t s  d e r i v a t i v e  i n  the  d i r e c t i o n  

w be nonposi t ive.  

We now prove some lemmas. 

Lemma 1.1 

L e t  ycRn and y # 0. Then 
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= a l l  skew symmetric nxn matr ices .  

I 
I 
I 

I 
I 
I 
I 
I 
I 

I 

Proof:  

C K Y ? K ~ &  yL s ince  for a r b i t r a y r  K E ~ ,  

Let X E ~ '  and e =(!I . Then s ince  y # 0, the re  e x i s t s  an or tho-  

gonal matrix U f o r  which y = IIylIUe. 

(xJ l lYI IUe)  = IIYII(U*xJe) = O *  

Thus, s ince  (x ,Y)  = 0, 

Thus (U*x,e) = 0.  

But i t  i s  c l e a r  that t h i s  r equ i r e s  

U*X 

n-2. 

for same zi,  i=1,2, . . .n .  

* (x ,y )  and IIxII = G x )  denote the euc l idean  i n n e r  product and 
norm, r e s p e c t i v e l y .  
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But 

4 

Z 

Thus, 

I . .. 

. 

. 

. . . . . . .o f. . . . . . o  

i: 1 . 
0 . . . . . . . 0  

n-1 -z  - z2  . . . - z  

0 0  

* 
. o  

n-1 . - z  

I 

I/ Y II 
Q.E.D. 

Lemma 1 . 2  

L e t  yeRn and y # 0. Then the  s o l u t i o n s  of t he  i n e q u a l i t y  

(x ,y)  < 0 a r e  given by 
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:I' 
where X > 0 and the  elements a are arbi t rary.  

- 
Proof :  

Let x s a t i s f y  (x,y) < 0 where 0 f yeRn. Then x = wy+v 

where c1 i s  a s c a l a r  and v ~ y l .  

f o r  sorre skew-symmetric matr ix  K. Also, (x ,y)  = (py+v,y) = 

= CL ily/I2 < o s o  P < 0 .  

By the  previous lemma, v = Icy 

Conversely, every such x provides a so lu t ion .  
Q.E.D. 

'de can now determine the  systems w i t h  r e spec t  t o  which a 

given func t ion  i s  a Lyapunov funct ion.  

Theorem 1.3 
Let fEC I n  ( R  ) and V s a t i s f y :  

(3.) O < V e C ( R )  2 n  - 
(ii) v(x)  = 0 * x = 0 

(iii) V(X) + = as IIxII + 
( i v )  w(x) = 0 x = 0 ,  

Then V i s  a Lyapunov func t ion  f o r  f e f ( x )  =: [K(x) - X(x)IIW(x) 
where X;C1 end, 1) -<( X,(x) g Ilf(x)ll 

-I 

on Rn - 0 and K(x) is  skew 

symmetric. 11 VVll 
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Proof:  

(e) If f ( x )  = E(.) - X(x)I] W a s  spec i f i ed  i n  the  theorem, then 

(P,W) =E (W,KW) - X(W,W) 

= -x1lw/l2 < o on R~ - 0.  

( 3 )  I f  ( f  ,W) < 0 on Rn - 0, then by the  previous lemma 

f(x) = -X(x) W(x) + K(x)VV(x). 

But (f ,W) = -XI1 W(12 so 

x =  eC1(Rn - 0)  and X(x) > 0 f o r  x # 0. 

II Wll Q.E.D. 

Remarks : 

(1) The theorem says that  V corresponds t o  f a s  a Lyapunov 

func t ion  i f  and only i f  they can be r e l a t e d  by a X(x) and K(x) 

according t o  the equat ion f ( x )  = k ( x )  - X(x)I] W ( x ) .  

We w i l l  now show t h a t  t h i s  equation can be solved f o r  

v ( 4  
F i r s t  we need a lemma. 

--- 
e denotes ''if and only i f "  

9 a n d +  denote "implies" 
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Lemma 1 . 4  

If K is  any skew symmetric matr ix  then  i t s  eigenvalues  

l i e  on t h e  imaginary a x i s  s o  t h a t  i f  X # 0 then  K - X I  

i s  a non-singular matr ix .  

Proof:  

From matr ix  theory w e  know that  the  u n i t a r y  mat r ices  

a r e  the exponent ia ls  of skew symmetric ma t r i ces ,  But the 

eigenvalues  of u n i t a r y  matr ices  have modulus 1, Then 

the s p e c t r a l  mapping theorem the eigenvalues  of skew 
I 

symmetric matr ices  are on the imaginary ax is .*  
Q.E.D. 

Thus, by the  lemma, f o r  X # 0, OV = [K - XI”J-’f Sut  

t h i s  p a r t i a l  d i f f e r e n t i a l  equation can be solved [ , 2 7 6  ] 

where v ( x )  E [K(x) - X(x)I]- l  f ( X ) .  

( 2 ) .  Whereas Theorem 1.3 provides the correspondence from a 

p o s i t i v e  d e f i n i t e  form t o  the systems r e spec t  t o  which i t  

. is a Lyapunov func t ion ,  remark (1) provides the correspondence 

i n  the o t h e r  d i r e c t i o n .  

*see Y.R. Gantmacher [3] 
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That i s ,  suppose f ( x )  i s  given and 

s t r u c t  i t s  Lyapunov func t ions ,  we would 

n2 - n+2 - t u p l e s  of func t ions  t o  const .  2 

we want t o  con- 

have t o  f i n d  the 

t u t e  t he  elements o 

K(x) and X(x) which i n  t u r n  would provide v ( x )  which i n  

t u r n  would be in t eg ra t ed  t o  get V ( x ) ,  Note that  the e l e -  

ments of K(x) and X(x) must be related through f s o  t h a t  

p a r t i a l ~ L d i f f ' e r e n t i a l  equat ions avi n2 - 2 the 
a x ,  

J. J 

1 n  (3)  

(1) - ( i v ) .  Then K(x) and X(x) can be ca l cu la t ed  s o  that  

f ( x )  = [Klx) - X(x)I]vV(x).  Furthermore suppose X(x) > 0 

Suppose f c C  ( R  ) , f ( x )  = 0 e x = 0 and V(x) s a t i s f i e s  

on some d e l e t e d  neighborhood of the o r i g i n .  Then f i s  

g l o b a l l y  asymptot ica l ly  s t a b l e  if det . [K(x)  - X ( X ) I I  # 0 

f o r  x j 0 ,  

Corol la ry  1.5 
1 The C autonomous d i f f e r e n t i a l  systems on Rn which have 

quadra t i c  Lyapunov func t ions  can be represented (module a 

non-singular l i n e a r  t ransformation)  a s :  

2 = [K(x) - X(x)P]x where 

K = K(x) i s  skew symmetric, X = h(x) > 0 on Rn - 0 and 

XeC1(Rn - 0 ) ,  and P i s  a p o s i t i v e  d e f i n i t e  symmetric nxn 

mat r ix .  

Every such system has t h e  quadra t ic  Lyapunov func t ion  

Vgx) = l/xii2,, 

r e s p e c t  t o  orthogonal t ransformations.  

Also t h e  form o f  t h e  system i s  i n v a r i a n t  w i t h  
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Proof :  
1 n  Assume the hypotheses; namely t h a t  2 = f(x) E C ( R  ) 

and ( f , W )  < 0 on Rn - 0 where V(x) = 2(x,Px), 1 P p o s i t i v e  

d e f i n i t e  and symmetric, 

c o r o l l a r y ,  

Then W ( x )  = Px s o  by the  previous 

f ( x )  = [K(x) - X(x)I]Px where X > 0 on Rn - 0 and 

XfC1(Rn - 0 )  and K(x) i s  skew symmetric. 

Now make the  change of var iab le  y = f l  x where f i  i s  

the unique symmetric p o s i t i v e  d e f i n i t e  square r o o t  of P. 

J p y  so 

x = (dF)- ly  

K ( G )  i s  skew symmetric and 0 < X(dF-’y) on Rn - 0 and 
1 n  a l s o  C ( R  - 0 ) .  

Conversely, every system of the form 2 = [K(x) - X(x)Plx 

has V(x) = llxi12 a s  a Lyapunov func t ion  s i n c e  W(x)  = 2x 

and (rK - XP]x, 2x) = 2(x,Kx) - 2 X(x,Px) 

= 2 ~ ( x , P x )  for x # 0 .  

To see  t h a t  the given form o f  the d i f f e r e n t i a l  equat ion 

i s  i n v a r i a n t  with r e spec t  t o  orthogonal l i n e a r  t ransformations,  

l e t  y = Ux where U i s  an orthogonal matr ix .  
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Then = UA = U[K ' -  ? ~ q  U*y 

= [UKU* - XUPU*]y. 
But UKU* i s  skew symmetric and UPU* i s  p o s i t i v e  d e f i n i t e  

symmetric, 
Q.E.D.  

Now by a jud ic ious  choice of U and a poss ib l e  repara-  

n e t e r i z e t i o n  of the s o l u t i o n s  we can o b t a i n  an even f u r t h e r  

reduct ion  t o  a cannonical form: 

Corol lary 1.6 

Every C1 autonomous d i f f e r e n t i a l  system on Rn which has 

a quadra t ic  Lyapunov func t ion  ( i n  a coordinate  system (x)) 

i s  geometr ical ly  equiva len t  t o  a system 

k = [K(x) - A]x where 

, X1 > 0 and conswant  A = 1,2, ... n and 

J 
A =  I ' *  * -  

L o  

0 
c! 
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Remarks : 

(1) Every such system has the Lyapunov function 

I n  Every such system in which Q(X)E C (R ) has a linear ( 2 )  

part 

Proof: 

In the previous corollary, choose U so as t o  diagonalize 

P o  Also reparameterize by dt ds = X(x) . 
We shall now solve the nonhomogeneous inequality which 

occurs in the analysis of non-autonomous systems. It is a 

generalization o f  lemma 1.2. 

Lemma 1.7 
Let ycRn and y # 0. 
Then the solutions of the inequality (x,y> < c are given 

Let c be a fixed scalar. 

[:: -X . 

whc.~? X > 0, the elements of CY are arbitrary and f3 satisfies 

t h e  equation (p,y) + xc = 1. 
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\ Froof:  L e t  x = ( x l , x 2 , a o a , x  * be an a r b i t r a r y  element i n  n 

R n o  Then (xl, x 2 , 0 0 0 , x  ,I)* i n  Rn+' can be represented a s  
n 

u - hv where h i s  some s c a l a r ,  v = ( Y 1 , Y p o  0 0 9Yi-1 f =e) *  

and U E V ' ~  

ther, ( x g y )  - c = -Xilvi12 < 0. 

But i f  x i s  a so lu t ion  o f  t he  i n e q u a l i t y  (x ,y><  c ,  

But  v # 0 so h > 0 ,  
A Furthermore, by lemma l.1, u can be written as  u = Kv where 

k i s  a skew symmetric (n+ l>x(n+ l )  matr ix ,  

if :.nd. only if ( x l J  x,,, 

:rid X E V '  Thct i s ,  t h e  so lu t ions  o f  t h e  i n e q u a l i t y  ( x , y > <  c 

x 1)" = u - xv f o r  x > L' 
L n' 

a r c  t h e  sDlutions o f  t h e  system 

-A 
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-x 
-X 

' A  a 

I h 

-a / 

13 

so  the  s o l u t i o n s  of  t h e  i n e q u a l i t y  can be w r i t t e n  

where t h e  equat ion (B,y)  + Xc = 1 must a l s o  be s a t i s f i e d ,  
Q.E.D. 

We s h a l l  now make the  appropriate  assumptions and 

d e f i n i t i o n s  so  t h a t  ne can prove t h e  theorem corresponding 

to bheorem 1.3 for t h e  nonautonomaus case .  

o f  how nonautonomous systems a r i s e  i n  a p p l i c a t i o n s  we r e f e r  

t h e  rceder to Sect ion  11. 

For a d i scuss ion  

Consider a system of  d i f f e r e n t i a l  equat ions 

2 = f i ( x  'x ... x t) i = 1,2,0.0n where t h e  r i g h t  hand 
i 1 2' n' 
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t h e i r  p a r t i a l  d e r i v a t i v e s  afi (xl,x2, D o  . ,xn, t )  

domain r of t h e  space o f  v a d a b l e s  
- 
ax 

sides t o g e t h e r  

a r e  continuous 

wi th  

i n  a 

9 - O e t X  , to* The d i f f e r e n t i a l  equat ion w i l l  a l s o  

We make t h e  

x1Jx2 n 
w r i t t e n  a s  a vec tor  equat ion 2 = f ( x , t ) .  

assumptions on a func t ion  v = v ( x , t )  and i t s  p a r t i a l  
2v x t d e r i v a t i v e s  , i = 1,2, . . .n i n  I'. We f u r t h e r  

a x i  

be 

same 

assume 

0' 
E 

to i t  5 TI where eo ,  to and T a re  fixed cons tan ts  and t h a t  

v ( x , t )  = 0 and f ( x , t )  = 0 i f  and only if x = 0, f o r  each te [ to ,T] .  

We a l s o  r equ i r e  t h a t  for each f ixed t ,E[ to ,T]  t h e  l e v e l  

su r f aces  v(x , t , )  = constant - < eo a r e  simple closed su r faces  

( topo log ica l  n-spheres) about ( O , t l ) .  For example, i f  f o r  

each f ixed  t le[to,T1 v(x , t , )  i s  def ined for a l l  xeRn, then  

the previous condi t ion  i s  s a t i s f i e d  i f  v ( x , t )  - 4 -  a s  ]/xi1 -4 Q) 

and vxv(x, t )  = 0 i f  and only if x = 0, for each fixed 

J 

t€ [tom e 

A condi t ion s u f f i c i e n t  for t r a j e c t o r i e s  passing through 

a po in t  (x',t,) i n  N ( v )  a t  time tl < T t o  remain i n  t h e  s e t  
E A  

1 U 

N~ ( v )  L C(x,t)l/ o - < v ( x , t )  - < v(x  y t l ) l  f o r  f u t u r e  time 

T i s  t h a t  

f o r  which x f 0. 

D e f i n i t i o n  

1 
dt < 0 along the  t r a j e c t o r i e s  i n  NE ( v )  

0 

up t o  

When f and v s a t i s f y  a l l  of t h e  above condi t ions  w e  say 
*These condi t ions  a r e  s u f f i c i e n t  for t he  ex i s t ence  and 
uniqueness of t h e  s o l u t i o n s  of  t h e  d i f f e r e n t i a l  equat ions,  
s ee  Pontryagin [4,1591 a 
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15 
t h a t  f ( x , t )  i s  v-s tab le  on NE ( v ) ,  

0 

We can now apply lemma 1.7 t o  determine t h e  v - s t ab le  

systems 

Theorem l e d  

The systems which a r e  v-s table  on N, ( v )  a r e  those which 
0 

can be w r i t t e n  i n  t h e  form: 

f ( x , t )  = [K(x, t )  - X ( X , ~ ) I ] V ~ V ( X , ~ )  - -!id @ ( x , t )  

on N;?) where X(x,t) > 0 for x # 0, K i s  skew symmetric and 

B s a t i s f i e s  the equat ion (S,v,v) - X 0 
= 1. a t  

Proof: The proof i s  a simple app l i ca t ion  of  lemma l o 7  

and t h e  f a c t  t h a t  dt = ( f , V X V )  + a’ along a t r a j e c t o r y .  d v ( x , t )  

Remarks : 

(1) 

(2) 

Theorem 1.8 is  a gene ra l i za t ion  o f  Theorem 1 .3  

The way t h a t  t h i s  theorem could be appl ied would 

be t o  choose a v and N, ( v )  f o r  t h e  problem and 

then  try t o  choose the parameters K,  X and B so  

t h a t  t h e  r e s u l t i n g  sys tem f ( x , t )  matches up w i t h  

t h e  system being analyzed. Notice t h a t  t h e  equat ion 

t h a t  6 must s a t i s f y  i s  a l i n e a r  a lgeb ra i c  equat ion.  

0 

We now r e t u r n  t o  t h e  autonomous case .  
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Theorem 1.9 
1 n  Suppose f(x) E C (R ) and that f(x) = 0 CJ x = 0. 

Furthermore suppose V satisfies: 
2 n  (i) 0 L V E C  (R ) 

(ii) ~ ( x )  = o e x = o 

(iii) V(x) > 03 9 x = 0, and 

(f,W> < 0 in a deleted neighborhood of the origin. 
Then if (W, V(f,W)) - < 0 in Rn the system 2 = f(x) 

is globally asymptotically stable, 

Proaf: 

Suppose the hypotheses of  the theorem hold. 

If' ( f , W )  < 0 on Rn - 0 then V is a Lyapunov function 
and the system is globally asymptotically stable. 

We now consider the contrary case, Thus, there exists 

x # 0 in Rn such that (f'(x), W(x)) = 0 (by the intermediate 

va1u.c theorem which applies since ( f , W )  is continuous in 

Rn - 0 which is connected and since ( f J W )  < 0 in a deleted 
neighborhood of the origin .) 

Define T - rx: (f'(x),W(x)) = 0, x # 03 which we note to be 

a nonempty closed set. Then by (iii) and the continuity of 

V, min V(x) occurs for a point in T which we denote by x* 
X € T  
Thus V(x*)  = min V(x), 

XE T 
Next ~e define 

E* E [x: 0 < v(x )  < v(x*)]. 
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T h i s  i s  Zn open, arc-wise connected set  about t h e  o r i g i n .  

To see t h c  G-:rcwise connectedness of a set  [x: 0 < V ( x )  < C Y ]  

where Q > 0, suppose there were a component o t h e r  than  t h e  

one about the o r i g i n  - c a l l  it 8. But 8 i s  bounded s ince  

If m i 2  V ( x )  occurs a t  a point i n  8 ,  then  i t  i s  necessary 
xce 

t h a t  VV = 0 a t  the  po in t ,  which i s  impossible,  s ince  8 does 

not con ta in  the o r i g i n .  

The remaining p o s s i b i l i t y  i s  t h a t  m i g  V ( x )  occurs on 

3 8 ,  the  boundary of 8.  But be = [ x : V ( x )  = so we would have 
X E e  

V ( 8 )  = a and so aga in  W = 0, t h i s  time on all of 8 ,  Thus 

t h e r e  a r e  no o t h e r  components. 

( a )  Therefore we have ( f , V V )  # 0 on D* which i s  connected, 

bu t  ( f ,vv)  < 0 on p a r t  Of 80 ( f ,W)  < 0 on 811 of W .  

( b )  We now snow that  x* - E vV(x*) i s  i n  D* f o r  a l l  s u f f i c i e n t l y  

V(x*  - E v V ( X * ) )  = V ( x * )  - E \\0V(x*)\l2 + O ( E ~ ) .  But 

V V ( X * )  # o so  for a l l  s u f f i c i e n t l y  small  E > 0 ,  V(X* - EVV(X*) ' )  

<: V ( x * ) .  A l so  x* - E o V ( x * )  # 0 for all s u f f i c i e n t l y  

small  E > o s ince  x* # 0 .  

Therefore 0 < V(x* - c v V ( x * ) )  < V ( x * )  f o r  a l l  s u f f i c i e n t l y  

small  E > 0.  
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Thus from ( a )  and ( b )  we have (f[x* - EvV(X*) ] ,  ( c )  

VV[X* - E vV(x*) ] )  < o f o r  a l l  s u f f i c i e n t l y  small E > 0 ,  

Now we s h a l l  show t h a t  t h i s  l eads  t o  a con t r ad ic t ion  of 

our  hypotheses. 

(d ) Expanding, 

(f[x* - EVV(X*)] ,  VV[X* - €VV(X*)] )  = 

= ( f (x* ) ,  vv(x*)) - E ( f ( X * ) ,  (g) vv(x*)) 

- E ( v V ( X * ) ,  ($$) vV(x*) )  + h(O(E2)) where l[h(O(E2))II = O ( E  2 ) 

as E + 0, Thus, l e t t i n g  E + 0 and d iv id ing  by -1, 

a vv 
ax But (-) i s  a symmetric m a t r i x  so  

(Vv(x*), (-) bVV f ( X * )  + (C ) vv(x*)) > 0 
W* ax* 

But t h i s  says ( v V ,  v ( f  , v V ) )  > 0 a t  x* which is cont rary  

t o  our  hypothes is ,  
Q.E.D. 

SECTION I1 

APPLICATIONS, CALCULATION 
OF BEST ESTIMATORS 

Some Remarks About Sec t ion  I 

One of the  ob jec t ives  i n  Sect ion I was t o  study the  

connection between a d i f f e r e n t i a l  equat ion  and i t s  Lyapunov 
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func t ions .  We saw that  part of 

equat ion  can be changed without 

Lyapunov func t ion .  That i s ,  i f  

19 

the  form of 

r equ i r ing  a 

a d i f f e r e n t i a l  

change i n  the  

w e  have a system f (x) 

with Lyapunov func t ion  V(x) then we can pe r tu rb  the system 

by adding any term of the  f o r m  K(x) vV(x) (where K(x) i s  

skew symmetric) t o  get another  system with the same Lyapunov 

func t ion .  This has the important impl ica t ion  tha t  once a 

Lyapunov func t ion  has  been found f o r  a system t h e r e  are a 

v a r i e t y  of design changes that can be made i n  the phys ica l  

system which w i l l  not a f f e c t  the s t a b i l i t y  of the system. 

S imi l a r  remarks could be made about nonautonomous systems. 

Another conclusion that can be drawn from theorem 1.3 
N 

i s  tha t  i f  the parameters i n  a p o s i t i v e  d e f i n i t e  form V can 

be ad jus ted  s o  tha t  i t  w i l l  be a Lyapunov func t ion  f o r  f ( x ) ,  

then the  parameter adjustment could be done by equat ing 

X(x) > 0. 
nonautonomous case .  

A corresponding remark could be made about t he  

It should be noted tha t  ' the  condi t ions  i n  the  

theorem could be changed t o  give l o c a l  r e s u l t s .  Of course 

t h a t  i s  a l l  t h a t  i s  required i n  many appl ied  problems s ince  

t h e  phys ica l  system ope ra t e s  i n  only a small  p a r t  o f  t h e  

phase space. 

We now d i scuss  how some applied problems f a l l  i n t o  t h e  

category t h a t  has  been considered. 
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How Lyapunov Functions Might Apply t o  the Study of Equations 

of Disturbed Motion 

We s h a l l  now i n d i c a t e  how Lyapunov func t ions  might be 

used t o  ob ta in  e s t ima tes  of the d is turbed  motion about a 

r e fe rence  t r a j e c t o r y ,  

Consider an ordinary d i f f e r e n t i a l  equat ion 

f = g ( y , t )  t o  be c a l l e d  t h e  equat ion of undisturbed 

motion and l e t  = i ( t , t o y y o )  be a s o l u t i o n  s a t i s f y i n g  

Y ( t o , t o y y o )  = yo. We a r e  i n t e r e s t e d  i n  analyzing the  

behavior of t h e  system i n  a neighborhood of the  re ference  

t r a j e c t o r y  y e  Define a new va r i ab le  x = y - f and consider  

t h e  new d i f f e r e n t i a l  equat ion 

2 = f ( x , t )  5 g ( x  + F , t )  - g ( f , t ) .  The l a t t e r  equat ion 

i s  c a l l e d  t h e  equat ion of d is turbed  motion. Any s o l u t i o n  

x = x ( t y t o , x o )  w i t h  x ( t o y t o , x o )  = x 

t h e  vec to r  d i f f e rence  between corresponding p o i n t s  ( i n  time) 

on t h e  reference t r a j e c t o r y  and the t r a j e c t o r y  generated 

by t h e  equation of  undisturbed motion pass ing  through 

of t h i s  equat ion g ives  
0 

a t  time to. Notice t h a t  f ( 0 , t )  E 0 f o r  a l l  t o  yo + xo 
It should be noted t h a t  no l i n e a r i z a t i o n  has been made 

and t h a t  an important f e a t u r e  o f  t h e  Lyapunov technique i s  

t h a t  w i t h  i t  an at tempt  i s  made a t  ob ta in ing  bounds on t h e  

v a r i a t i o n  i n  x without l i n e a r i z i n g  t h e  equat ion of d i s turbed  

motion. 

Thus we a r e  led t o  a nonautonomous d i f f e r e n t i a l  equat ion 
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= f ( x , t )  where f ( 0 , t )  =- 0. We s h a l l  now consider  

t h e  motion of t h i s  system i n  the  space-time conf igura t ion  

space ind ica ted  by f i g .  1. 

Reference Tra jec tory  --- ___f 

Fig.  1 - A Neighborhood Of  
The Reference Tra jec tory  I n  Space-Time 

I 

I n  c e r t a i n  appl ied problems it i s  important t h a t  f o r  

va r ious  kinds of  neighborhoods of t h e  re ference  t r a j e c t o r y  

t h e  t r a j e c t o r i e s  i n t e r s e c t i n g  t h e  neighbcrhmd remain i n  the 

neighborhood f o r  f u t u r e  t ime. 

can be appl ied t o  v e r i f y  t h e  ex is tence  of  these neighborhoods 

and a l s o  t o  determine t h e i r  size and shape. 

I n  p r i n c i p l e  Lyapunov func t ions  

I n  some app l i ca t ions  t o  the guidance and con t ro l  of 

aero-space veh ic l e s  t h e  system equat ion f o r  t h e  con t ro l l ed  

system 2 = f ( x , t )  and t h e  reference t r a j e c t o r y  7 a r e  obtained 

only a f t e r  much work i n  t h e  face of many design c o n s t r a i n t s ,  

Obviously it i s  important t h a t  these  c o n s t r a i n t s  not  be 
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v i o l a t e d  when t h e  system i s  d i s t u r b e d  away from the  re ference  

t r a j e c t o r y .  

s i z e  of t h e  d is turbances  t h a t  can be t o l e r a t e d .  

i t  would be valuable  t o  be a b l e  t o  quickly p r e d i c t  the  var iance 

i n  i n i t i a l  condi t ions t h a t  could be t o l e r a t e d  i n  a rocket  

launching problem without c r i t i c a l l y  v i o l a t i n g  the c o n s t r a i n t s  

on t h e  burnout v e l o c i t y  and p o s i t i o n ,  

solved i f  a Lyapunov func t ion  such a s  i n  theorem 1,8 could 

be found f o r  t h e  system. 

Also it is  an important problem t o  p r e d i c t  t h e  

For example, 

This  problem would be 

We s h a l l  now consider  t h e  problem of computing Lyapunov 

func t ions .  F i r s t  we d i s c u s s  t h e  autonomous case  and l a t e r  t h e  

nonautonomous case ,  

Ca lcu la t ion  of B e s t  Es t imators  V for Autonomous Systems 
A 

L e t  f ( x )  be a C1 d i f f e r e n t i a l  system which i s  asymptot ica l ly  

s t a b l e  a t  t h e  o r i g i n .  Suppose t h a t  we have s e l e c t e d  a 

p o s i t i v e  d e f i n i t e  form v"(x) w i t h  free parameters i n  a set R 

and f o r  each choice of  t h e  parameters condi t ions  (i) - ( i v )  

of Theorem 1.3 a r e  s a t i s f i e d .  

how t o  a d j u s t  t h e  parameters of V(x) so  a s  t o  make it  i n t o  

The problem t o  be considered i s  
N 

a Lyapunov func t ion  f o r  f ( x ) .  

I n  view of Theorem 1.3 we can now consider  t h e  systems 

which correspond t o  v, t h a t  i s ,  o f  d i f f e r e n t i a l  equat ions 

F(x) = [ K ( x )  - X ( X ) I J ~ ~ ( X )  

where K(x) is any skew symmetric matr ix  func t ion  o f  x and 

X(x> i s  any p o s i t i v e  d e f i n i t e  form,  We now propose approximating 
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f by T by s u i t a b l y  determining K, X and the f ree  parameters 

i n  v", 
Since K i s  allowed t o  depend upon x we f i rs t  choose it 

Ly 

so a s  t o  so lve  t h e  problem, rnin \If - f11. But 
V 

Thus 

t h a t  

n 

= \If - M \ I 2  + 2X(f - m-, IC) + x2J1wJI - 2  

K occurs i n  only the f i rs t  term and i t  i s  easy t o  see 

Next w e  minimize over X(x). 

when (f,E) < 0 ,  - 

Now it  would seem appropr ia te  t o  conclude the  approximation 

by a l e a s t  squares type determination o f  the parameters by 

choosing a c o l l e c t i o n  of base po in t s  x f i l l i n g  out  a neigh- 

borhood of t h e  o r i g i n  under i n v e s t i g a t i o n .  I n  s h o r t  w e  a r e  

l e d  t o  a d j u s t i n g  t h e  free parameters i n  the  form V by 

A 

N 



I '  
I *  
I 
I 
I 
I 
I 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

24 

minimizing t h e  non-negative real valued func t ion  d ( u )  def ined 

on t h e  parameters space SI by t h e  formula: 

Whenever d(w) has a minimum on SI we c a l l  t h e  corresponding 

v" a best  e s t ima to r  and denote i t  by 0 .  
Thus once the  form v" has been se l ec t ed  and t h e  base 

A p o i n t s  x spec i f i ed ,  then t h e  computation f o r  a d j u s t i n g  t h e  

parameters t o  o b t a i n  V reduces t o  a standard numerical 

problem of minimizing a real valued func t ion  d(w)  of  seve ra l  

h 

A N A 
v a r i a b l e s  over s1. Of course V ( x )  depends upon V,  x and f .  

Once the  c a l c u l a t i o n  i s  terminated, the reg ion  where 

( f ( x ) ,  W(x) )  < 0 w i l l  a l ready  be ca l cu la t ed .  
A 

A Calcu la t ion  o f  B e s t  Es t imators  v f o r  Nonautonomous Systems 

We now c a r r y  out  t h e  corresponding c a l c u l a t i o n s  f o r  t h e  

nonautonomous case.  

form y ( x , t )  with parameter space 52 has been s e l e c t e d .  

t h e  autonomous case we attempt t o  o b t a i n  an  algori thm fcjr 

a d j u s t i n g  t h e  parameters of v" by approximating f by systems 

Again we assume t h a t  a p o s i t i v e  d e f i n i t e  

A s  i n  

which a r e  v" s t a b l e  with respec t  t o  Thus we de f ine  

d(w)  = min min. t 3 on52 
X>O K - 
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where ? i s  t o  have the  form 

where K i s  skew symmetric and B(x , t )  i s  any s o l u t i o n  of 
u 

a v  N 

fB ,VxV)-X at = 1. 

h Here ( x , t )  denotes a c o l l e c t i o n  of  base p o i n t s  i n  t h e  

neighborhood of the re ference  t r a j e c t o r y  i n  t h e  space-time 

conf igura t ion  space. 

t h e  parameters i n  v" w i l l  be t o  minimize d ( u )  over ne 
t h i s  minimum i s  r e a l i z e d  a t  some po in t  i n  fi the  corresponding 

As before,  the  algori thm for a d j u s t i n g  

When 

v" w i l l  be ca l l ed  a best es t imator  and be denoted by v .  h 

We now c a l c u l a t e  t h e  two minimums indica ted  i n  t h e  formula 

f o r  d(o) e 

N 
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+ . . .  

- 1 ' ~  - [g ($,VXT) + (f,VXY) 
N II vxvll 

Now we use the fact that @ is restricted to be a solution 
of the equation (S,Vxy) = 1 + X E a7 in the two equations 
above t=, ge t  
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Thus w e  see 

Therefore 

d ( u )  = 

1. 
we get 

min min’j- j f -HI1 
X>O - K I I  fll 

G when (f,Vx?) + 0 

Thus we see tha t  the  formula f o r  d ( a )  reduces t o  t he  one 

previous ly  der ived f o r  the autonomous case.  
N 

We have not  discussed the problem of how V o r  7 and R is  

t o  be s e l e c t e d .  A s tudy  of t h i s  problem would be of value t o  

the technique f o r  computing bes t  e s t ima to r s  discussed above. 
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